Gene and cell therapies can offer hope for treatment to people living with rare or difficult-to-treat conditions. What conditions currently have authorised therapies in Europe?
Gene and cell therapies can offer hope for treatment to people living with rare or difficult-to-treat conditions. What conditions currently have authorised therapies in Europe?
Gene and cell therapies have been developed and authorised for a growing number of conditions. Researchers are working to develop new therapies for more conditions, but this number is still limited. While genetic and cell-based treatments are often referred to under the blanket term of gene and cell therapy, there is no single ‘gene and cell therapy’, any more than there is a single ‘surgery’. Each therapy is tailored to the disorder it treats – making a specific genetic change, or replenishing a population of a specific cell type which are not functioning correctly in the patient’s body.
The conditions targeted by gene and cell therapies are often complex and difficult to treat. Because of this complexity, and because each therapy is tailored specifically to the disease it targets, developing new therapies is a lengthy process. The development and licensing process is strictly regulated at a regional and European level.
This page lists therapies which have been approved for clinical use in the European Union.
The research and development of cell and gene therapies is a longitudinal process, beginning with basic science in the lab, and ending, in the ideal scenario, with a safe, effective therapy. Different studies within Europe and around the world are at different stages of the research process.
As research techniques advance, scientists are continuing to make new findings about fundamental cell biology and genetics. In the laboratory, scientists are investigating novel therapies, and using human cells and tissues to create ‘models’ of certain diseases.Clinical researchers are conducting clinical trials, in which patients receive novel therapies under close medical supervision to determine their efficacy. Medical and clinical researchers are also investigating whether licensed therapies can be re-purposed – that is, whether they might be useful in treating other disorders, or treating other elements of the same disease.
If you are interested to find out what research is being conducted for a particular disease or organ system, you can find more information in ‘Current and Potential Uses’.
Different conditions present different challenges when it comes to developing new therapies. For example, developing a gene therapy for a disorder caused by a single-gene mutation is less complex than developing a gene therapy for a condition caused by multiple genes, or a condition caused by a mix of genetic and lifestyle factors. Some tissues and organs are also more ‘accessible’ for collecting cells, or for delivering therapies (such as blood, or the eye). Gene and cell therapy relies on altering millions of cells to have a successful effect, so figuring out how to deliver the therapy effectively is an important aspect of development.
Gene and cell therapies must also undergo rigorous scientific, ethical and regulatory review at the research and clinical trial stages of development, as well as at the marketing stage where relevant. The path from ‘bench to bedside’ – from the development of a treatment in a lab to its regular implementation in the clinic – takes many years. A study which has shown promise in clinical trials may take several years to receive full regulatory approval, and there may be further delay between a treatment’s approval and its availability through a national public health service.
You can read about the clinical trials process here, and about the regulation and development of new therapies here.
The following conditions can currently be treated by licensed gene and cell therapies within Europe. You can find more information about a condition, existing treatment, and current research in our condition-specific fact-sheets. We are continually developing and adding new factsheets.
Blood cancers arise from an overproduction of certain cells in the blood system. The nature of the cancer depends on the type of cell being produced in excess.
Blood stem cell transplants are used in the treatment of leukaemia, lymphoma, myeloma, myelodysplastic syndrome, and myeloproliferative disorders. The patient’s stem cells which are producing faulty cell types, are removed via chemotherapy. (This also removes the healthy, non-cancerous cells; patients are vulnerable to infection and other health complications at this stage of therapy.) They are then replaced either with healthy donor cells, or with their own cells which have been altered in a lab., which are producing some faulty cell types, and replace them with healthy donor cells. This is often colloquially referred to as a bone marrow transplant, bone marrow stem cell transplant, or haematopoietic stem cell transplant. You can read our factsheet about blood stem cell transplants here.
A hybrid gene and cell therapy called Chimaeric Antigen Receptor T-Cell therapy (CAR-T therapy) is used to treat certain kinds of aggressive blood cancers. This is a personalised treatment in which the patient’s own immune cells are collected, ‘genetically reprogrammed’ in the lab to target their cancer, and reintroduced to the body. In children and young people, CAR-T therapy is used to treat certain leukaemia (B-cell acute lymphoblastic leukaemia), and in adults it is used to treat certain lymphomas (diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma) and multiple myeloma. As this is a highly complex procedure, it is typically attempted only after more routine treatments have not been effective. You can read our factsheet about CAR-T therapy here.
Severe Combined Immunodeficiency (SCID)
Severe Combined Immunodeficiency (SCID) is a group of genetic disorders in which an individual’s immune system is severely compromised, and cannot mount a suitable defence against infection.
SCID can be treated by blood stem cell transplants to replace the faulty immune cells with healthy donor cells. You can read more about blood stem cell transplants here.
When a suitable donor cannot be found for blood stem cell transplant, gene therapy, or combined cell and gene therapy, may be appropriate to try to correct the disease-causing mutation. You can read more about gene therapy here.
Other immunodeficiencies
Congenital immunodeficiencies, such as those associated with DiGeorge Syndrome or ataxia-telangiectasia, often result from malfunctioning immune cells called T-cells. These cells are responsible for targeting and destroying foreign, ‘non-self’ cells.
T-cell deficiencies can be treated by blood stem cell transplants to replace the faulty immune cells with healthy donor cells. You can read more about blood stem cell transplants here.
Acquired loss of immune function
In individuals born with a functioning immune system, immune functioning may be compromised later in life. This may be due to by illness (such as HIV/AIDS), by medical interventions (such as radiation therapy for cancers), or due to environmental factors (such as radiation poisoning).
This acquired loss of immune function can be treated by blood stem cell transplants to replace the faulty immune cells with healthy donor cells. You can read more about blood stem cell transplants here.
Anaemia
Anaemias are a set of disorders characterised by a decrease in the number of red blood cells, which are responsible for transporting oxygen around the body. Anaemia may be acquired or congenital. It is often caused by a mutation leading to either an under-production of red blood cells, or the production of faulty red blood cells. Examples include aplastic anaemia, pure red cell anaemia, and paroxysmal nocturnal haemoglobinuria. It can also be caused by lifestyle factors, such as diet.
When anaemia is caused by a genetic mutation, it can be treated by blood stem cell transplants to replace the faulty blood-producing cells with healthy donor cells. You can read more about blood stem cell transplants here
Sickle cell disease
Sickle cell disease (SCD) is a group of genetic diseases. The most serious type is called sickle cell anaemia. People with SCD produce abnormally-shaped red blood cells. These abnormally-shaped cells do not live as long as healthy red cells. The can 'clump' and block blood vessels, depriving tissues of oxygen. SCD is a lifelong condition requiring ongoing management, with initial symptoms usually appearing in early childhood. Many countries in Europe routinely screen newborns for SCD as part of the newborn blood spot test ('heel prick test').
People living with SCD experience episodes of severe pain called sickle cell crises (SCC), which can last for up to a week and may require hospitalisation. SCD can also cause anaemia, which can lead to fatigue and shortness of breath, and in severe cases may require an emergency blood transfusion. People with SCD are also more susceptible to serious infections. SCD can also cause other health issues, such as delayed growth or onset of puberty, lung problems, and stroke.
Sickle cell disease is usually managed with medication. It can be treated by blood stem cell transplant to replace the faulty blood-producing cells with healthy donor cells. You can read more about blood stem cell transplants here.
Beta-thalassaemia
Beta-thalassaemias (also caled β-thalassaemias) are a group of blood disorders which result from the abnormal formation of haemoglobin. This is the molecule in red blood cells which transports oxygen. This can result in anaemia, fragile bones, and delayed growth.
There are three main forms of beta-thalassaemia. Beta-thalassaemia major is the most severe form. Symptoms such as severe anaemia, delayed growth, and abnormal skeletal development typically appear within the first two years of life. Beta-thalassaemia intermedia present symptoms later in life. The most common and serious symptom is mild to moderate anaemia. Beta-thalassaemia minor presents as mild anaemia, or may even be asymptomatic.
People with severe beta-thalassaemia may require regular blood transfusions. These transfusions, or the conditions itself, can result in an excess of iron in the blood, leading to heart, liver and hormonal complications. These complications can be serious and even fatal, and severe beta-thalassaemia must be managed by a multi-disciplinary healthcare team.
Beta-thalassaemia is usually managed with blood transfusions and medication. It can be treated by cell therapy (blood stem cell transplant) or by hybrid gene-cell therapy. You can read more about blood stem cell transplants here.
Other blood disorders
Other genetic or acquired blood disorders, such as haemoglobinopathies, cytopenia, or haemophagocytic lymphohistiocytosis, may be treated by blood stem cell transplant to replace the faulty blood-producing cells with healthy donor cells. You can read more about blood stem cell transplants here.
Multiple sclerosis is a neurodegenerative disorder in which an individual’s immune system targets the insulating layer of nerve cells in the brain and spinal cord. This results in impaired signalling the nervous system, and may cause physical and cognitive symptoms. You can read our fact sheet about multiple sclerosis here.
Multiple sclerosis can be treated with a blood stem cell transplant to replace the faulty immune cells, similar to other immune-mediated disorders. This stops the immune system damaging the central nervous system, although it does not reverse this damage. This is currently the only clinically validated treatment available in Europe. You can read our factsheet about blood stem cell transplants here.
Crohn’s disease
Crohn’s disease is a chronic condition characterised by inflammation of a region of the digestive system. Symptoms include stomach cramps and pain, diarrhoea or bloody stools, and rapid weight loss (or, in childhood presentations, failure to thrive). Some patients with Crohn’s diseases may develop anal fistulas – abnormal passages between the gut and the skin of the anus. ‘Complex’ fistulas are those which have several openings or passages, extending deep within the body, or which have other complications such as abscesses or aggregations of pus.
Crohn’s disease is typically managed with anti-inflammatory medication, or by surgery to remove a small section of the gut. When these interventions are not successful, patients may receive cell therapy, in the form of donated cells, to reduce inflammation and promote growth of new tissue.
Gene- and cell-based therapies also have applications in regenerative medicine. These therapies can be used to address acquired damage, such as damage caused by long-term illness, natural ‘wear and tear’, or injury. While much research is being conducted into the use of regenerative therapies to halt or reverse the effects of such damage, only two applications are currently approved for use within the European Union.
Corneal repair. Combined gene and cell therapy can be used to treat severe damage to the cornea, such as a chemical burn. The cells which replenish the cornea (limbal stem cells) are collected from a patient, then genetically altered in the lab to repair the damaged tissue. These genetically modified cells are grown in large numbers and then re-implanted into the damaged eye. You can read about this therapy here.
Cartilage repair. Cell therapy can be used to treat damage to the cartilage of the knee joint. Chondrocytes – the cells which produce the building components of cartilage – are collected from the patient’s knee cartilage. In the lab, these chondrocytes are grown into spherical clusters (spheroids). These spheroids are inserted into defects in the knee joint, adhering to the cartilage and promoting the growth of new, healthy cartilage. This therapy only works for defects under a certain size.
Here you will find a complete list of gene and cell therapies authorised for clinical use in Europe, and the condition they are licensed to treat. Please be aware that some therapies may not yet be available through your national healthcare provider.
This list is reviewed for accuracy on a regular basis, and was last reviewed on 02.05.2022.
Understanding the causes of a disorder is the first step towards developing a therapy. Identifying the genetic or cellular cause of a disorder can take years of research. This can take even longer if the condition is rare.
The development of new therapies is a lengthy process. In typically takes seven years for a clinical trial to be completed – and this is after the basic science and pre-clinical work has already been conducted. Again, this process is longer is a condition is rare; larger studies numbers allow for a better understanding of the safety, efficacy and side-effects of a therapy, and if fewer people are living with a condition it can take longer to find enough volunteer participants.
Certain types of disorders are easier to treat for physiological reasons. Developing a therapy may take longer depending on the region of the body affected, as researchers must also investigate an appropriate delivery mechanism.
You can find information about ongoing research in gene and cell therapy in our condition-specific factsheets.
This page only lists treatments which have been validated as safe and effective, and which are currently approved within the European Union.
Gene and cell therapies undergo rigorous scientific, ethical, and regulatory review at the research and clinical trial stages of development (as well as at the marketing stage, where relevant). The path from ‘bench to bedside’ - from the development of a treatment in a lab to its regular implementation in the clinic - takes many years. A study which has shown promise in clinical trials may take several years to receive full regulatory approval, and there may be further delay between a treatment’s approval and its availability through a national public health service. You can read about the clinical trial process here, and about the regulation of new therapies here.
Under rare, strictly controlled circumstances, patients may be granted access to medicines which have not yet received market authorisation, or via regulatory pathways other than the standard marketing authorisation. The most well-known of these pathways is termed compassionate use. If a patient or patient group has no satisfactory authorised therapy for their disease, and cannot enter clinical trials, products in development can be made available. This relies heavily on the patient’s suitability for the treatment; some approaches will not be appropriate for an individual patient’s genetic make-up, or may – not every approach will suit an individual patient’s genetic profile. While apparently successful outcomes of compassionate use are rightly celebrated in the media, it is important to keep in mind that these cases are uncommon, and that a small number successful treatments does not mean that there is now a standard, widely available treatment. You can read the EMA's guidance on compassionate use of products under development in Europe here.
EuroGCT’s aim is to provide clear information on gene and cell therapies, reviewed by experts in the field, to support patients and healthcare providers in making decisions regarding their treatment plan. The EuroGCT staff cannot offer advice on individual cases or comment on specific clinics. If you are considering whether a particular treatment is right for you, and would like to prepare for this conversation with your healthcare provider, these questions may be helpful to you.
If you are looking for information about a treatment you have seen advertised elsewhere which is not listed on this page, and would like more information about the safety of therapies which are not fully licensed, you can read here about clinical trials and investigational and unregulated therapies. If you have concerns about the safety or legitimacy of a therapy, we urge you to discuss this further with a trusted member of your healthcare team.
This page is updated on a monthly basis to reflect any developments in the regulation and availability of gene- and cell-based therapies. The information listed here is up-to-date as of 02.05.2022.
Advanced therapy medicinal products (ATMPs) are medicines for human use based on cells, genes or tissues. ATMPs are a subset of gene and cell therapies, as not all gene and cell therapies are medicines or correspond to the legal definition of ATMPs.
There are three broad categories of ATMP:
Products referred to as combined ATMPs are those which contain one or more medical device as part of the medicine, such as cells embedded in a biodegradable scaffold.
Many ATMPs fall under the regulatory category of orphan medicinal products, or orphan drugs. This is a category of products developed with legal incentives, due to the fact that the disease it targets is so rare that it would not be profitable to produce as a solely commercial venture. A medicine can qualify for these incentives if it treats a rare condition (affecting fewer than 5 in 10,000 people in Europe).
The 14 products listed below are those which are currently licensed for use as orphan medicinal products by the EMA. (The EMA has granted market authorisation to a total of 19 ATMPs. However, 5 have been withdrawn from commercial use These are Provenge, Dendreon, which was licensed to treat metastatic prostate cancer; MACI, Vericel, which was licensed to treat cartilage defects in the knee; Glybera, uniQure, licensed to treat lipoprotein lipase deficiency; Chondrocelect, TiGenix, licensed to treat cartilage defects; and Zalmoxis, MolMed SpA, license to treat graft-versus-host disease) You can find more information about the regulation of ATMPs in Europe here.
Therapy Type | No. Products – EMA Approved | Advanced Therapy Name(s), Manufacturer(s) | Population |
Cell Therapy | 2 |
|
|
Tissue Therapy | 1 |
|
|
Gene Therapy | 4 |
|
|
Cell-Gene Therapy *CART-T | 4 |
|
|
Cell-Gene Therapy *HSCT | 3 |
|
|
List of national competent authorities in the EEA
List of ATMPs available in the UK and calendar of planned advanced treatment services - developed by ATTC Network (UK-specific resource)